Logical and Arithmetic Shifting

Prof. James L. Frankel Harvard University

Version of 10:36 AM 2-Dec-2021 Copyright © 2021, 2017 James L. Frankel. All rights reserved.

Logical Shifting

- Logical shifting moves the bits in data either left or right with the incoming bits always equal to zero
- Logical shift right distance is one bit
 - Before: \mathbf{b}_{6} **b**₅ b_4 b₁ b₀ bb₂ b, • After: **b**₇ b b b, b₁ 0 b, ba

• Logical shift left – distance is one bit

• Before: **b**₇ \mathbf{b}_{6} b₄ b₀ b₅ b b_2 b₁ • After: \mathbf{b}_{6} b₄ **b**₅ b_3 b, b₁ b 0

Arithmetic Shifting

- Arithmetic shifting moves the bits in data right with the incoming bits replicated from the sign bit
- Arithmetic shift right distance is one bit
 - Before: \mathbf{b}_{6} **b**₅ b_4 b_3 b₁ b₀ b₋ b, • After: **bb**₇ b b b, b₁ b, b₂

• Arithmetic shift right – distance is two bits

• Before: **b**₇ b₄ b_6 b₅ b b, b₁ b • After: **b**₇ **b**₇ **b**₇ \mathbf{b}_{6} b b_A ba b,

Why is Arithmetic Shifting Useful?

- Two's-complement signed numbers
 - Positive
 - Equivalent for logical and arithmetic right shift
 - Negative
 - Logical and arithmetic have different results
 - Logical would shift in zero bits
 - Arithmetic would shift in one bits (for negative values)

Example of Negative Number with Logical Shift

- Using an 8-bit representation
- The value -2_{10} would be represented in binary as
 - $2_{10} = 0000\ 0010_2$
 - $\sim 2_{10} = 1111 \ 1101_2$
 - $\sim 2_{10} + 1 = 1111 \ 1110_2$
- -2_{10} logical shift right one-bit position would be 0111 1111₂ or 127₁₀

Example of Negative Number with Arithmetic Shift

- Using an 8-bit representation
- The value -2_{10} would be represented in binary as
 - $2_{10} = 0000\ 0010_2$
 - $\sim 2_{10} = 1111 \ 1101_2$
 - $^{2}2_{10} + 1 = 1111 \ 1110_{2}$
- -2_{10} arithmetic shift right one-bit position would be 1111 1111₂ or -1_{10}

Another Example of Negative Number with Arithmetic Shift

- Using an 8-bit representation
- The value -3_{10} would be represented in binary as
 - $3_{10} = 0000\ 0011_2$
 - $\sim 3_{10} = 1111 \ 1100_2$
 - $^{3}_{10}$ + 1 = 1111 1101₂
- -3_{10} arithmetic shift right one-bit position would be 1111 1110₂ or -2_{10}

How Does Integer Division Round Results?

• This is interesting when either the numerator or the denominator is negative

How Does Integer Division Round Results?

- This is interesting when either the numerator or the denominator is negative
- Usually toward zero, but sometimes toward negative infinity (*i.e.*, floor)
- In C89, either is acceptable
 - That is, the result is implementation-defined
- In C99, the result is rounded toward zero
- In Python & Ruby, the result is rounded toward negative infinity
 - You can read on-line about the reasons for these decisions